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What transient motions occur as a fluid responds to gravitational forces in a 
rotating channel, and what equilibrium does the fluid adjust to? This problem 
is studied to illustrate how boundaries affect the process of adjustment to a 
geostrophic equilibrium. In particular, linear solutions are found for an infinitely 
long channel of constant width and constant depth when there is an initial 
discontinuity in the level of the free surface. The results are summarized in the 
figures, and can be described in terms of Poinear6 waves and Kelvin waves. 
When the channel is wide compared with the Rossby radius, the final state 
involves a current of that width which follows the left-hand boundary (for 
Northern-Hemisphere rotation) to the position of the initial discontinuity, then 
crosses the channel and continues downstream along the right-hand wall. 

1. Introduction 
Much of the behaviour of the atmosphere and ocean can be understood in 

terms of a competition between various forcing effects and gravity. Gravity can 
be dubbed the restoring force which tries to bring the system towards an equi- 
librium state; the competing forces can be thought of aB agents which tend to 
disrupt such an equilibrium. A major step towards understanding the complex 
situations which arise in practice is gained by studying how systems behave when 
the ‘disruptive’ forces are absent and gravity is the force which causes the system 
to change. This paper explures one such situation. 

Historically, geophysical applications were amongst the first to be tried for 
the equations of Auid motion after these were developed by Euler (1755). In  
particular, Laplace (177819) derived what are now called the ‘Laplace tidal 
equations’, which describe motion under gravity on a rot,ating sphere in the 
presence of tide-generating forces, i.e. those due to the gravitational attraction 
of the sun, moon, etc. He began the study of wave motions under gravity by 
finding (in a section called “On Waves” in the third part of his paper) the 
dispersion relation for gravity waves in the absence of rotation. Kelvin (1879) 
found the wave solutions for a rotating channel: not only the edge wave named 
after him, but also the so-called ‘ Poinear6 wave’, which was further discussed in 
a book on tidal theory by Poincar6 (1910). 

The problem considered in this paper is of a type studied by Rossby (1937, 
1938) in order to clarify the mechanism by which pressure and velocity distribu- 
tions in the atmosphere and ocean tend to undergo mutual adjustment, that is, 
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approach a ‘geostrophic’ equilibrium wherein pressure gradients are balanced 
by the Coriolis acceleration. The method is simply to consider an initial-value 
problem where this balance is not satisfied at the beginning, and thereby study 
how quickly and by what means the adjustment to equilibrium takes place. 
Rossby himself did not calculate full details of the adjustment process, but 
found some integrals of the motion. In  particular, he was able to find the final 
state without knowing details of the adjustment process. This remarkable result 
used the principle which is known as ‘conservation of potential vorticity ’. The 
relevant equation in fact appeared in Kelvin’s paper of 1879, but does not lead to 
such a noteworthy result when the initial perturbation is zero. Rossby also 
drew attention to the fundamental length scale of the adjustment problem, 
which he called the ‘radius of deformation ’. An excellent account of subsequent 
work on Rossby’s problem is given by Blumen (1972). 

In  the particular case considered by Rossby, there was assumed to be no 
dependence on one of the horizontal co-ordinates. The aim of this paper is to 
calculate the effects of boundaries for the case where the fluid is in a channel of 
finite width. As will be seen, this introduces some fundamentally new features 
into the problem because the Kelvin wave associated with each boundary can 
propagate information in only one direction. 

The motivation for studying this type of problem mainly comes from con- 
siderations of internal adjustment in the ocean or in other large bodies of water 
like the Great Lakes, for effects of coastal boundaries are important in such 
cases. Examples where the channel geometry might be of particular interest are 
straits like the Bosphorus or the Straits of Gibraltar, where there are density 
differences between the water masses at each end, or in deep channels connecting 
ocean basins. 

2. Definition of the problem 
The problem to be considered is the adjustment under gravity of a stratified 

fluid in a channel of constant width and constant depth. The perturbations from 
the rest state, where pressure and density are functions only of depth, are 
assumed to be infinitesimal so that linear analysis can be applied. Also the 
perturbations are assumed to have horizontal scales large compared with the 
vertical scales so that the ‘ long-wave ’ or ‘ shallow-water ’ or, equivalently, the 
‘hydrostatic ’ approximation can be used. In  these circumstances, the motion 
can be separated into normal modes (see Krauss 1966; Gill & Clarke 1974). For 
each normal mode, the variations in the horizontal and in time are the same as 
for a homogeneous fluid with an appropriate ‘equivalent depth ’. For simplicity, 
the initial perturbation will be assumed to have energy in only one of the normal 
modes. The problem is therefore equivalent to one of adjustment of a homo- 
geneous fluid of appropriate equilibrium depth H ,  so notation appropriate t,o the 
equivalent homogeneous problem will be used. 

Let (z, y, z )  be rectangular co-ordinates such that the z axis points upwards 
and the sides of the channel are parallel to the x axis. The axes are fixed in a 
frame that rotates uniformly about a vertical axis with angular velocity Q f. Thus 
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f is the Coriolis parameter. Let 3 be the upward displacement of the free surface 
from its equilibrium position and g be the gravitational acceleration. If the 
above-mentioned assumption is made (the shallow-water or hydrostatic approxi- 
mation) the horizontal velocity components (u, v) corresponding to the co- 
ordinates (x, y) are independent of depth. If t represents time, the governing 
equations are the momentum equations 

%/at - fv = - ghlax, 

avlat + fu = - garlay 

(2.1) 

(2.2) 

and the continuity equation 

The system can be made non-dimensional by choosingf-1 as the unit of time 
and the Rossby radius of deformation (gH)*/f as the unit of horizontal distance. 
The unit of vertical displacement can be set by the initial distribution, and the 
unit of horizontal velocity can be set at ( g / H ) )  times this value. This choice of 
units is equivalent to putting f = g = H = 1 in the equations. The origin for y 
can be chosen such that the channel walls are at y = Sb, i.e. the channel width 
is b times the radius of deformation. 

The problem is to solve (2.1)-(2.3) for some initial distribution 

7 = qo, u = uo, v = vo at t = 0, (2.4) 

where Vqo, uo and vo are assumed to be non-zero only in a finite region. The 
boundary conditions are that 

v = O  at y = f & b ,  (2.5) 

and that energy cannot propagate in from x = & co. For simplicity attention will 
be mainly devoted to the particular case where 

uo = 0, vo = 0, qo = sgnx, (2.6) 

with sgn x defined as the step function 

The function (2.7) is to be interpreted as a jump which is narrow on the unit 
scale (i.e. the radius of deformation) but wide compared with the depth of fluid. 
This is necessary for the shallow-water approximation to be consistent. Clearly 
the radius of deformation must be large compared with the depth for the whole 
approach to be valid in the first place. Methods used for solving the particular 
case with initial condition (2.6) may be readily generalized. 

Before calculating the solution for finite channel width, two limiting cases 
where the solution is well known will be discussed. The fist limit is that of a 
narrow channel. If the channel is narrow enough, motion normal to the channel 
walls is suppressed and with it the associated Coriolis acceleration. Thus the 
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motion is the same as in a non-rotating channel. The second limit is that where 
the channel width is infinite. In  this limit, the problem is the classical ‘Rossby 
adjustment problem’, where there is no dependence on one of the spatial CO- 

ordinates, 

3. The narrow-channel limit 
Consider the limit b -+ 0 for the case where the initial profiles uo,y70 and vo are 

independent of y. In  this limit, the walls are so close together that motion normal 
to them is suppressed, i.e. v = 0. Thus (2.1), using the special units of length 
and time, becomes 

and (2.3) becomes arlat+au/ax = 0. (3.2) 

a27lat2 = a2r/ax2. (3-3) 

The solution 7 = N ( x , t ) ,  u = @(x, t )  (3.4) 

These are also the equations for a non-rotating system. If u is eliminated, the 
wave equation results: 

of this system is well known. In  the special case where the initial state is (2.61, 
Jf’ and @ are given by 

(3.5) I N ( x ,  t )  = g[sgn (x + t )  + sgn ( x  - t ) ] ,  
@(x, t )  = i[ - sgn ( x  + t )  + sgn ( x  - t ) ] .  

This solution consists of two steps (representing wave fronts) which move in 
either direction from the initial discontinuity with unit speed (or, in dimensional 
terms, with speed (gH)&) .  Ahead of the wave fronts, the solution is no different 
from the initial state. Behind the wave fronts, the solution is 

r = o ,  u = - 1 ,  (3.6) 

i.e. the surface displacement is zero and a current flows from the region of high 
surface elevation towards the region of low surface elevation. 

The above solution is the first approximation for the narrow-channel limit, 
and higher approximations can be obtained by expanding u, v and 7 as power 
series in b. Equation (2.2), for example, shows there is a finite cross-channel 
slope because of rotation effects, but the difference in elevation between the two 
sides of the channel is small, and so this gives a contribution to 7 of order 6 .  In  
the formal procedure, x variations are considered to be of order unity as b+O 
while y has the scale b. The highest-order term in the expansion for v is then of 
order b and each term in the expansion can be split into two parts: one for which 
the time scale is of order unity and one for which the time scale is of order b. 

Given the above information, the expansion procedure is straightforward, so 
details will not be given. However, it  may be of interest to point out that this 
procedure can be used in another context to compute effects of rotation on 
seiches and tides in gulfs and estuaries whose width is not large compared with 
the radius of deformation (cf. Taylor 1921; Hendershott & Speranza 1971). To 



Adjustment .under gravity in a rotating channel 607 

b s t  order, the non-rotating models are applicable and effects of variable cross- 
section can be incorporated if desired. Expansion in the ratio of the mean width 
to the radius of deformation gives the rotation effects, as in the above problem. 

4. Equations derived from the governing equations 
Consider f i s t  the energy equation, which can be derived from the governing 

equations by multiplying (2.1), (2.2) and (2.3) by u, w and 7 respectively and 
adding. Using the special units of length and time, this gives 

i a  a a 
--(u2+v2+?p)+-(uy)+- (vy) = 0. 
2 at ax aY 

Integrating over a finite section of the channel 1x1 < L, 
to time gives pf-Pi+h;-K{ = R, 

*y2 ax dy 
where 

is the potential energy, 

K = I t b  I L  +(u2+w2)dXdy 
-4b - L  

Iyi d &b and withrespect 

(4.2) 

(4.3) 

(4.4) 

is the kinetic energy, the suffixes i and f refer to initial and final values re- 
spectively, and 

= jomJ;;b ( ( W ) L -  (ur)-L) dY dt (4.5) 

represents the energy lost by radiation, i.e. by waves carrying energy out of the 
region concerned. In  practice, L can be chosen such that this region includes 
the whole of the finite region where Vy,, u, and vo are non-zero. 

For example, the energy changes for the narrow-channel, or non-rotating, 
case considered in Q 3 are as follows: 

Pi = bL, pf = 0, Ki = 0, K, = bL, R = 0. (4-6) 

In  other words the initial energy, which is all potential energy in the example 
considered, is all converted into kinetic energy. A look a t  time dependence shows 
that all this conversion takes place in the time L it  takes a long gravity wave to 
cross half the region concerned. 

The second derived equation to be considered is thepotential-vorticity equation, 
which was used to good effect by Rossby. Its linear form (using the special units 
of length and time) 

(4.7) 

is obtained by subtracting (2.3) and they derivative of (2.1) from thex derivative 
of (2.2). The importance of this equation lies in the fact that it  can be integrated 
immediately, so giving a connexion between the initial and the final state of the 
system. For the linear case, the integrated form is 



608 A .  E .  Gill 

Equations in a single variable can be obtained by using (2.1) and (2.2) to eliminate 
any two of the three variables. For instance, the equation for q is 

the equation for v is 

and the equation for u is 

(4.10) 

(4.11) 

5. The infinitely wide channel 

times, so equations (2.1)-(2.3) in the special co-ordinate system become 
If the initial state is independent of y, so is the solution a t  all subsequent 

(5.1) 

a v p  +a = 0, (5.2) 

(5.3) 

aupt - v = - aq/ax, 

aqlat + aupx = 0. 

The potential-vorticity equation for this case is obtained by taking the x deri- 
vative of (5.2) and subtracting (5.3). Then, by integrating with respect to time, 
the special case of (4.4) obtained is 

avpx - 7 = av,/ax - 7,. (5.4) 

The equations satisfied by u, v and 7 are (4.9), (4.10) and (4.11) with the y 
derivatives zero. Studies of this problem are reviewed by Blumen (1 972). 

Rossby (1938) showed the power of the potential-vorticity concept by finding 
the final state without considering changes with time. Since the time derivative 
is zero, (5.1) gives v in terms of 7 and substitution in (5.4) gives 

a27/ax2- 7 ='avolax - qo, (5.5) 

a special case of (4.9). This equation may be solved by elementary methods. 
Rossby's solution was for an initial state where vo = qo = 0 and u, is non-zero 
(and constant) only in a finite strip. The solution for the initial state (2.6) is 

u = 0, q = M ( x ) ,  v = M'(x), (5.61 

where I 1-e-", x 2 0, 
- 1 + e-z, x < 0, 

M(x) = (5.7) 

and is shown in figure 1. 
The implications of this result in terms of energy are of fundamental import- 

ance. In  the narrow-channel or non-rotating case considered in 33, all the 
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(b) 

FIGURE 1. The steady solutions (a) 7 = M ( z )  and (b)  = M’(x)  for the 
wide-channel case. The unit of length is the Rossby radius. 

potential energy initially present is ultimately converted into kinetic energy. In  
the rotating system without walls, this is no longer true. Only a finite portion 
of the initial potential energy is ‘released’, i.e. converted into kinetic energy or 
used up in some other way. The amount released can be calculated using (5.7). 
By the definition (4.3), the difference between the final and initial potential 
energies is, per unit length in the y direction, 

On the other hand, the kinetic energy of the final state is only 

m 

(5.9) 

What happens to the remaining unit of energy? 
By (4.2), there are two possibilities. Either the energy is lost by radiation or 

the solution in any finite region never reaches a steady state. It turns out that 
the former alternative is the correct one, the energy being radiated by Poincar6 
waves. These have u, v and 7 proportional to exp (ikz - iwt )  and are free solutions 
of (4.9)-(4.11). By substitution in these equations, the dispersion relation is 

w2 = 1 + k 2 .  (5.10) 

The short waves are little affected by rotation and move a t  almost unit speed like 
ordinary gravity waves in a non-rotating system. The long waves, on the other 
hand, all have frequencies close to the inertial frequency, which is unity in the 
co-ordinate system being used. 

The fact that the solution approaches the steady one in any finite region, and 
does not simply oscillate about i t  with undiminishing amplitude, was discovered 
by Cahn (1  945), who solved the initial-value problem with Rossby’s initial values. 

39 F L M  77 
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The approach outlined below is somewhat different (a )  because of the representa- 
tion in terms of Poinear6 waves and ( b )  since certain definitions and properties 
are mentioned because of their usefulness later in discussing the finite-width 

(5.11) 
channel. In  particular, let 

be the solution of the transient problem for the given initial conditions. Then 

(5.12) the solutions 

for y and u are given explicitly in terms of V by (5.3) and (5.4), that is 

2, = V(x,t) 

y = N(x, t ) ,  u = U(x, t )  

(5.13) 

Thus there is particular value in looking first for the solution for V ,  which 

a v  iw :x(2 0) .  (5.14) 
satisfies (4.10), i.e. 

The solution V of (5.14) can be written as the sum of a particular solution and 
an appropriate combination of Poinear6 waves which are solutions of the homo- 
geneous equation. For the particular initial condition (2.6), a suitable special 
solution is the steady one, V = M'(x).  By symmetry, Poinear6 waves will only 
appear in the combination 

I u = u(x,t)  = -av(x,t)/at, 
y = N(x,t) = aV(x,t)/ax-dv,(x)/dx+y,(x). 

V =-- -  y 
ax2 at2 

COB ( k ~  + w t )  + cos (kx - w t )  = 2 cos kx cos wt, 

so V can be written in the form 

V(x,t) = a ( k )  cos(t(1 +k2)t)coskxdk, (5.15) 

where the dispersion relation (5.10) has been used to give w in terms of k. The 
initial condition requires 

M'(x) +2jrna(k)coskxdk. (5.16) 

The function a(k) can be found by taking the appropriate Fourier integral, or 

n o  

simply by looking up tables. Erdelyi et al. (1954, p. 8) give the result, when 31 

(5.17) 
is given by (5.7), that a(k) = - 1/( 1 +k2).  

The expression for U can be obtained from (5.12) : 

I -Jo{(t2-x2)t} for 1x1 < t ,  
0 for 1x1 > t ,  

(5.19) 

by Erdhlyi et al. (1954, p. 26; see also Dickinson 1969). This solution is given in 
Morse & Feshbach (1953, p. 139) and illustrated in figure 2. Morse & Feshbach 
call (4.11), with zero y derivatives, the Klein-Gordon equation, which can be 
derived for a stretched string embedded in an elastic medium. Equation (5.19) 
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FIGURES (a, b ) .  For legend see page 612. 

is then the solution for a point impulse. Because the short waves (k 1) behave 
as in the non-rotating case, a wave front moves out at unit speed just aa in the 
non-rotating case. The group velocity 

da/dk = k/( 1 + ka) (5.20) 

cannot exceed unity. Dispersion affects all waves other than very short ones, 
resulting in a 'wake' being left behind after the wave front has passed. Since 
t2 - z2 = ( t  - 2) (t  + x), the length scale of the solution just behind the front 
x = t decreases in inverse proportion to the time. 

There are various ways of computing solutions to the problem. The one used 
to compute the solutions shown in figure 2 is based on the expression (5.19) 
for u. From this, v can be found by integrating (5.2) and r ]  by integrating (5.3) to 

39-2 
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I 1  I 0  I I I I 
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FIGURE 2. The y-independent solutions for the infinitely wide channel for (a )  the surface 
elevation N(a ,  t ) ,  (b)  the velocity component U ( z ,  t )  perpendicular to the initial surface 
discontinuity and (c )  the velocity component V ( s ,  t )  parallel to the init,ial surface dis- 
continuity. The solutions are only shown for the region z > 0 as the solut,ions elsewhere 
can be found from the symmetry properties. Solutions are shown two units of time apart, 
starting at t = 2. (The unit of time isf-1 and the unit distance is the Rossby radius.) Disturb- 
ances move out a t  unit speed from the initial discontinuity trailing a 'wake' of Poinear6 
waves behind them. Eventually the solution approaches that shown in figure 1. 

obtain an integral expression with a Bessel-function kernel. Such a representa- 
tion can be used for any initial conditions, and Cahn (1  945) used this form for 
Rossby's initial conditions. For the case (2.6), the result is 

(5.21) 

w--z+ 
(x2+r2)-*Jo(r)rdr for 1x1 < t ,  

v = V(x,t) = [Io 
0 for 1x1 > t ,  

These solutions have the undisturbed value for 1x1 > t and various properties 
are easily demonstrated, e.g. that v 3 1 at x = 0 as t -+ co. An alternative method 
is based on fast Fourier transforms and uses (5.15). It is not so accurate in the 
neighbourhood of the wave front, but is useful for computing wavenumber or 
frequency spectra of the energy contained in the Poinear6 waves. 

6. The finite-width channel 
The solution for the finite-width channel contains elements of both limiting 

cases, but also has distinctive features not discernible in either limit. The best 
starting point is to find the solution for v since the boundary conditions apply 
to v. The requirement is therefore to solve (4.10) subject to the boundary con- 
dition (2.5). For simplicity of presentation, suppose that the initial values uo, 
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vo and v0 are functions of x only. Because of the boundary conditions ( 2 4 ,  a 
Fourier series expansion of the form 

v = I; O,(x, t )  cos my (6.1) 

with r n = ( 2 n + l ) n / b ,  n = O , 1 , 2 , 3  ,..., (6.2) 

is appropriate. Equations for the Om are obtained by multiplying (4.10) by 
(21b) cos m y  and integrating with respect to y from - +b to +b. This gives 

where U, = ( -  1).4(mb)-l 

is the coefficient in the Fourier expansion 

Note that all& satisfies an equation of the same form as (5.12). It can therefore 
be solved by the same methods, e.g. as the sum of a steady solution and a Fourier 
integral in terms of Poincar6 waves. 

Before calculating solutions of (6.3) for special cases, consider how 7 and u 
may be determined once the solution for v is known. One method of doing this 
is to express 7 and u as a sum of an odd part and an even part, i.e. 

U . O d ( X ,  Y ,  t )  = W X ,  Y ,  t )  - u(x,  -Y, t ) l ,  
ueV(x, y ,  t )  = *[u(x, y ,  t )  + 4x9 - y ,  t)l.  

The equations relating the variables uod, uev, rod, yev and v are the odd and even 
parts of (2.1),  (2.2), (2.3) and (4.8). Only six of these equations are independent, 
these being 

Uod = - a  ev  lay 2 (6.5), (6.6) 7 lay, rod = -auev 

(6.7) 

(6.8) 

(6.9) 

auevpt - v = - aTev/ax, 

avpt +uev = - a  7 od IY, a 
a p p t  + auevlax = 0, 

(6.10) 

Equations (6.5) and (6.6) can be used to eliminate uod and qod, so (6.8) and (6.10) 

(6.11) 
become 

uev - azuevlaY2 = avjat 

and 
(6.12) 

Taking note of the Fourier expansions (6.1) and (6.4), these integrate to give 

Uev = - I; (1 + m2)-l (%,/at) cos my + @(x, t )  cosh y sech i b ,  (6.13) 

yev = Z ( 1 + m 2 ) - 1 [ ~ + a r n ( ~ o - ~ ) ]  cosmy+X(x,t)coshysech&b, (6.14) 
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where, for the moment, @ and N are functions of x and t to be determined. It 
will turn out, however, that they are the functions defined in $3.  

To find 4 and .Ar, substitute (6.13) and (6.14) in (6.7) and (6.9). These give 

aalat = - aNIax, (6.15) respectively 

a.qat + a q a x  = 0, (6.16) 

showing that @ and N satisfy the same equations as the functions defined in 
$3 .  It remains to show that they satisfy the same initial conditions. First 
consider (6.13). At t = 0, this becomes 

uo(x) = A(x ,  y) + %(x, 0) cosh y sech i b ,  

A (x, 9)  = - z (I + my-1 [aa,latl,=, cos my. 

(6.17) 

(6.18) where 

It follows that 

(6.19) 

the last equality coming from (6.8) applied at t = 0. Since v vanishes on the 
boundaries, the solution is 

A = uo(x) (1 - cosh y sech ab),  (6.20) 

and so, by (6.17), @(x, 0) = uo(x) as required. The proof that N ( x ,  0) = qo(x) is 
similar, following from (6.14) applied at t = 0. 

The complete solution for the finite channel is now given by (6.1), where 8, 
satisfies (6.3), and by (6.13), (6.14), (6.5) and (6.6). Consider, for instance, the 
case where the initial conditions are given by (2.6). Then (6.3) becomes 

aqmlax2 - a*a,/at2 - ( I  + 8, = - 2~4, qx)  

= -2cc,(l+m2)tg((l+ma)tx). 

Comparing with equation (5.14) for the solution V(x, t )  for the infinite-width 
channel, it follows that 

8, = ( 1  +ma)-+,, B((1 +m%)ix, ( I  +m2)9t) (6.21) 

by (5.21). Hence, by (6.1), 
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ExpressionsforueVandr]evfollow by substitution of (6.21) in (6.13) and (6.14). 
Using (6,131, this gives 

(6.24) I uev = E(l+rn2)-1a,U((l+m2)bz, (1+m2)bt)cosmy 

7ev = E (1 +m2)-1amN((1 +m2)bz, (1 +mz)bt) cosmy 

+ @(z, t )  cosh y sech &b, 

-t.N(z, t) cosh y sech gb, 

which shows how the solution for a finite-width channel is related to the two 
limiting cases. If b+m (the wide-channel limit), sechgb+O so the terms 
involving '42 and N do not contribute. In  addition, (6.2) shows that m+O so 
the Fourier series tend to U(z ,  t )  and N(x, t )  as required. In  the opposite limit, 
b+O,  (6.2) shows that m+m so the Fourier series tend to zero. On the other 
hand, cosh y sech #I + 1 so urn+@ and 7ev +.V; i.e. the narrow-channel 
solutions of $ 3 are obtained. 

7. The solution for large times 

large times. For t + 00, $ 3 gives 
A property of the finite-channel solution of special interest is its form for 

@ = - l ,  N=O 

and $ 5  gives u = 0, N = M(x) 

with M given by (5.7). Thus from (6.24), 

(7.1) I uev = - cosh y sech @, 
?lev = 2 (1 +m2)-1amM((1 +m2)*x)cosmy, 

and hence (6.5) and (6.6) give 

(7.2) I U O ~  = Z m( 1 + m2)-1tcm M (  (1 + m2)* z) sin my, 
qoa = sinh y sech Sb. 

Figure 3 shows this solution for two different values of b (0.6 and 4). Consider 
some of the properties of this solution. 

First note that qeV vanishes on the walls, and so 7 itself takes constant values 

7 = ktanhgb a t  y = ++b (7.3) 

as required by the boundary condition (2.5) and the fact that the steady flow is 
geostrophic [equation (2.2)]. Associated with the difference in level is a steady 
transport or flux of fluid from the region of high surface level to that of low 
surface level. This flux is independent of x and given by 

?ib 
Udy = -2tanh&b, 

l-1, 
(7.4) 

which can be deduced from (7.1), or from (7.3) and the integral of (2.2). In the 
limit b --f 0, the value of 7 on the walls tends to zero as required, and the average 
flux across the channel tends to - 1, which is also consistent with (3.6). As b 
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FIGURE 3. The steady solution for a finite channel of width (a)  b = 0.6 and (b )  b = 4, the 
unit of length being the Rossby radius. The region shown is x > 0. Contours are of surface 
elevation a t  levels 0.1, 0.3, 0.5, etc. The arrows show the current direction and the length 
of the stem is proportional to  the speed. 

increases, the difference in surface elevation between the walls increases, with a 
limiting value of 2. This appears to contradict the wide-channel limiting solution, 
which is independent of x. The reason is that the wide-channel solution has a 
boundary-layer structure. Away from the walls, the solution is approximately 
independent of x and close to the solution of 9 5. The differences in level associated 
with the result (7.3) are associated with boundary layers near the walls. 

The boundary-layer structure for large b is most easily determined for large 
values of 1x1. Then (7.1) gives 

yev = X(l+m2)-1a,cosmysgnx (7.5) 

by (5.7). Using the argument which allowed (6.20) to be deduced from (6.19), 
the sum in (7.5) can be evaluated to give 

yeV -+ (1 - cosh y sech i b )  sgn x for 1x1 -+ 00. (7.6) 

Now using the expression (7.2) for rod, i t  follows that 

1 - e-u sech +b for x -+ co, '+( - 1 +eVsech+b for x-+-co. (7.7) 
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Also, since this steady flow is geostrophic, 

I -e-gsech+b for x-+00, 
-eusech+b for x-+--oo. 

In particular, when b is large, the flow takes place in currents confined to the 
boundaries, with the associated change in surface level also near the boundaries. 
These boundary layers have width equal to the Rossby radius with the current 
directed towards the region where the surface elevation was initially low. The 
‘upstream’ boundary current (x -+ 00) is against the left-hand wall y = - Bb. The 
surface level increases from the value - 1 on this wall to the undisturbed value 
+ I away from the wall. On the other hand, the ‘downstream’ boundary current 
(x -+ - 00) is against the right-hand wall. The surface elevation still increases 
towards the right, having the undisturbed value - 1 in the interior region and a 
value of + 1 on the wall. 

Some properties of the solution a t  the centre-line x = 0 can also be deduced. 
Here &! = 0 and so (7.1) and (7.2) give 

i u = - cosh y sech Bb, 
7 = sinh y sech i b .  (7.9) 

When b is large, these expressions show that the flux in the x direction is equally 
divided between boundary layers on the two walls, and the changes in the 
surface elevation on the line x = 0 are also divided between these two boundary 
layers. The v velocity component also has a boundary-layer structure and is 

(7.10) 
given by 

v(0, y) = C ( I  +m2)-*amcosmy. 

This expression tends to unity away from the walls as b -+ 00 and falls to zero 
in boundary layers near the walls. Thus the striking asymmetric pattern of 
figure 3 (b) is obtained. The current coming from x = 00 hugs the left-hand wall 
until it reaches the position of the initial discontinuity in level. There it crosses 
the channel and then follows the right-hand wall towards x = - 03. The contours 
of surface height are also streamlines, with high values in the region where x and 
y are positive and low values where x and y are negative. 

Energy changes between the initial and final states can be calculated from 
the above expressions. Using the definitions of $4,  the following results are 
obtained for large L, terms exponentially small as L -+ 00 being neglected: 

- Pf = 2L tanh +!I +p(b), 
where 

(7.11) 

4 2n+ 1)n 
p (b )  = gbC(1 +m2)-8a; = fb ( )‘[l+ (7)2]-’, (7.12) 

n=O 2 n + I ) n  

lJ,-P,-Ei, = r(b), 
where 

(7.13) 

The functions p(b) and r(b) are shown in figure 4. 
For small b, p(b)  N 0.00397b6 and r(b) N 0.0263b4. Thus pi -5 N bL and 
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b 

FIQKTRE 4. The functions p(b)  and r(b) assooiated with the energy changes in a region of 
length 2L of a channel of width b, the unit of length being the Rossby radius and the unit 
of energy being, for a homogeneous fluid, pH(gq,lf)a, where p is the fluid density, g the 
gravitational acceleration, H the undisturbed depth, q the initial surface elevation and f 
the Coriolis parameter. For large L, the change in potential energy is 2L tanh &b+p(b) and 
the energy lost by radiation is r(b). 

K ,  N b L  in conformity with the narrow-channel result (4.6). For large b, 
p 2: qb-  y and r N b - i y ,  where y = 5.093. Thus, for b-too and L fixed, the 
change in potential energy per unit width is 

b-l(P6 - Pf) = 3 + O(b-') 

and the change in kinetic energy per unit width is 

b-lR, = 1 + O(b-l) .  

Again these are consistent with the results (5.8) and (5.9) for the wide-channel 
limit. Note, however, that there is a contribution proportional to L which is due 
to the adjustment in the boundary layers adjacent to the walls. 

8. Development of the solution with time 
The changes in the solution with time are illustrated for two values of b in 

figure 5 .  The plots for the smaller value of b (0.6) show features like that of the 
narrow-channel limit while the larger value of b (4) is chosen such that the 
structure for large values of b is evident. In either case, a distinctive feature is 
the front which moves out from the initial discontinuity. Since both the Kelvin 
waves and the short Poincar6 waves move with unit speed, so does the front. 
The discontinuities at the front can be calculated from the expressions in $6. 
For instance, u = 0 ahead of the front, but just behind the front u = - 1 for all 
g by (6.24) and (6.5). Similarly 7 = 1 ahead of the front, but 7 = 0 just behind 
the front. On the other hand, 21 is zero both ahead of and just behind the front. 
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FIGURE 5. The development of the flow with time for a channel of width (a) b = 0.6 and 
(a) b = 4. Only the region m > 0 is shown and solutions are shown at times t = 2, 4 and 6 
(the time unit isf-l and the distance unit is the Rossby radius). Contours are of surface 
elevation at levels 0.1, 0.3, 0.5, etc. and the arrows indicate the direction and magnitude 
of the velocity. 
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The large discontinuities in 7 and u at the front make this quite a prominent 
feature of the solutions. In  the narrow-channel case, the changes in 7 and u 
persist, so that after a long time the values are close to those just behind the 
front. In  the wide channel, on the other hand, the changes in 7 and u only persist 
on the side of the channel where the Kelvin wave occurs. In  the remainder of 
the channel, 7 and u ‘recover ’ after the front has passed and their final values are 
close to their original ones, except for the region close to the initial discontinuity. 
The ‘wake’ of the waves behind the front can be seen even in the case where b 
is 0.6. There seems little point in saying more, because the figures speak for 
themselves. 

9. Conclusions 
One motivation for studying this problem was the idea that it would nicely 

illustrate the behaviour of a rotating stratified fluid in the presence of boundaries. 
This it does rather well, showing (a)  how boundaries close together can suppress 
the effects of rotation, ( b )  the nature of the adjustment well away from boundaries, 
with the fundamental length scale being the Rossby radius, and (c) the develop- 
ment of a ‘coastal jet’ on the boundary, this being set up by the passage of a 
Kelvin wave. 

Another motivation was concerned with flow of dense water out of a semi- 
enclosed basin like the Norwegian Sea. The outflow towards the exit from the 
basin could be carried by currents concentrated on either boundary, or be 
subdivided between two such boundary currents. How is this subdivision of flux 
determined? The problem discussed in this paper suggest’s that if the flow were 
established by removing an obstruction from the exit, there being an initial 
discontinuity in the upper surface of the dense water a t  the exit, the efflux from 
the basin would come entirely from a boundary current with, in the Northern 
Hemisphere, the coast on its left. Thus consideration of time development may 
help to resolve the question of what steady solutions are possible as a final sbate. 

The solution considered applies to any mode in a channel of uniform depth, 
and for general initial conditions the complete solution can be found as a sum of 
normal modes. The method cannot be applied when the depth varies. However, 
the solution would be expected to have the same character in a real ocean basin 
since long trapped waves on sloping boundaries also propagate in one direction 
only (Gill & Clarke 1974). 

The solutions presented are restricted in validity by the neglect of friction 
and of nonlinear effects. The latt’er effects (as a referee kindly pointed out) are 
particularly interesting, and imply a two-stage adjustment process. The first stage 
is the adjustment to a geostrophic equilibrium studied in this paper, the speed 
of adjustment being determined by the propagation velocity (gH)t .  In  a weakly 
nonlinear system, however, there will be a second stage with slower adjustment 
determined by the particle velocity U. The simplest case is that of a homogeneous 
fluid, where potential vorticity is conserved by each vertical line of fluid particles. 
The linear solution assumes infinitesimal velocities, so the potential vorticity at  
each point is fixed a t  its initial value. Tor finite velocities, however, figure 3 
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shows that potential vorticity initially associated with the region x > 0 will be 
advected into the region x < 0, thus initiating the second stage in the adjustment 
process. Calculation of details of this adjustment would make an interesting 
study. 

I wish to thank Mr Julian Smith for computing and displaying the solutions 
shown in figures 2, 3 and 5. 
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